
Universitatea Politehnica Bucureşti
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Chapter 2

Summary

2.1 Contributions of this thesis
The main optimization problem of interest considered in this thesis has the following form:

min
x∈Rn

F (x) (= f(x) + Ψ(x)) (2.1)

s.t.: Ax = b,

where f is a smooth function (i.e. with Lipschitz gradient), Ψ is a simple convex function (i.e.
minimization of the sum of this function with a quadratic term is easy) and matrix A ∈ Rm×n

is usually sparse according to some graph structure. Another characteristic of this problem is its
very large dimension, i.e. n is very large, in particular we deal with millions or even billions
of variables. We further assume that the decision variable x can be decomposed in (block)
components x = [xT

1 xT
2 . . . xT

N ]
T , where xi ∈ Rni and

∑
i ni = n. Note that this problem

is very general and appears in many engineering applications:

• Ψ is the indicator function of some convex set X that can be written usually as a Cartesian
product X = X1 × X2 × · · · × XN , where Xi ⊆ Rni . This problem is known in the
literature as separable optimization problem with linear coupling constraints and appears
in many applications from distributed control and estimation [13,62,65,100,112], network
optimization [9, 22, 82, 98, 110, 121], computer vision [10, 44], etc.

• Ψ is either the indicator function of some convex set X = X1 × X2 × · · · × XN or 1-
norm ∥x∥1 (in order to induce sparsity in the solution) and matrix A = 0. This problem
appears in distributed model predictive control [61,103], image processing [14,21,47,105],
classification [99, 123, 124], data mining [16, 86, 119], etc.

• Ψ is the indicator function of some convex set X = X1 × X2 × · · · × XN and A = aT ,
i.e. a single linear coupled constraint. This problem appears is page ranking (also known
as Google problem) [59, 76], control [39, 83, 84, 104], learning [16–18, 109, 111], truss
topology design [42], etc.

We notice that (2.1) belongs to the class of large-scale optimization problems with sparse
data/solutions. The standard approach for solving the large-scale optimization problem (2.1)
is to use decomposition. Decomposition methods represent a powerful tool for solving these
type of problems due to their ability of dividing the original large-scale problem into smaller
subproblems which are coordinated by a master problem. Decomposition methods can be
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divided in two main classes: primal and dual decomposition. While in the primal decomposition
methods the optimization problem is solved using the original formulation and variables, in dual
decomposition the constraints are moved into the cost using the Lagrange multipliers and the
dual problem is solved. In the last 7 years I have pursued both approaches in my research. From
my knowledge I am one of the first researchers that used smoothing techniques in Lagrangian
dual decomposition in order to obtain faster convergence rates for the corresponding algorithms
(see e.g. the papers [64, 65, 71, 72, 90, 91, 110]). In this thesis however, I have opted to present
some of my recent results on primal decomposition, namely coordinate descent methods (see
e.g. the papers [59–61, 65, 67, 70, 84]). The main contributions of this thesis, by chapters, are as
follows:

Chapter 1: In this chapter we develop random (block) coordinate descent methods for
minimizing large-scale convex problems with linearly coupled constraints and prove that
it obtains in expectation an ϵ-accurate solution in at most O(1

ϵ
) iterations. Since we have

coupled constraints in the problem, we need to devise an algorithm that updates randomly
two (block) components per iteration. However, the numerical complexity per iteration of the
new methods is usually much cheaper than that of methods based on full gradient information.
We focus on how to choose the probabilities to make the randomized algorithm to converge
as fast as possible and we arrive at solving sparse SDPs. Analysis for rate of convergence
in probability is also provided. For strongly convex functions the new methods converge
linearly. We also extend the main algorithm, where we update two (block) components per
iteration, to a parallel random coordinate descent algorithm, where we update more than two
(block) components per iteration and we show that for this parallel version the convergence
rate depends linearly on the number of (block) components updated. Numerical tests confirm
that on large optimization problems with cheap coordinate derivatives the new methods are
much more efficient than methods based on full gradient. This chapter is based on papers [67,68].

Chapter 2: In this chapter we develop randomized block-coordinate descent methods for
minimizing multi-agent convex optimization problems with a single linear coupled constraint
over networks and prove that they obtain in expectation an ϵ accurate solution in at most
O( 1

λ2(Q)ϵ
) iterations, where λ2(Q) is the second smallest eigenvalue of a matrix Q that is defined

in terms of the probabilities and the number of blocks. However, the computational complexity
per iteration of our methods is much simpler than the one of a method based on full gradient
information and each iteration can be computed in a completely distributed way. We focus on
how to choose the probabilities to make these randomized algorithms to converge as fast as
possible and we arrive at solving a sparse SDP. Analysis for rate of convergence in probability
is also provided. For strongly convex functions our distributed algorithms converge linearly. We
also extend the main algorithm to a parallel random coordinate descent method and to problems
with more general linearly coupled constraints for which we also derive rate of convergence.
The new algorithms were implemented in Matlab and applied for solving the Google problem,
and the simulation results show the superiority of our approach compared to methods based on
full gradient. This chapter is based on papers [58, 59, 69].

Chapter 3: In this chapter we propose a variant of the random coordinate descent method for
solving linearly constrained convex optimization problems with composite objective functions.
If the smooth part of the objective function has Lipschitz continuous gradient, then we prove
that our method obtains an ϵ-optimal solution in O(N2/ϵ) iterations, where N is the number of
blocks. For the class of problems with cheap coordinate derivatives we show that the new method
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is faster than methods based on full-gradient information. Analysis for the rate of convergence in
probability is also provided. For strongly convex functions our method converges linearly. The
proposed algorithm was implemented in code C and tested on real data from SVM and on the
problem of finding the Chebyshev center for a set of points. Extensive numerical tests confirm
that on very large problems, our method is much more numerically efficient than methods based
on full gradient information or coordinate descent methods based on greedy index selection.
This chapter is based on paper [70].

Chapter 4: In this chapter we analyze several new methods for solving nonconvex optimization
problems with the objective function formed as a sum of two terms: one is nonconvex and
smooth, and another is convex but simple and its structure is known. Further, we consider both
cases: unconstrained and linearly constrained nonconvex problems. For optimization problems
of the above structure, we propose random coordinate descent algorithms and analyze their
convergence properties. For the general case, when the objective function is nonconvex and
composite we prove asymptotic convergence for the sequences generated by our algorithms to
stationary points and sublinear rate of convergence in expectation for some optimality measure.
Additionally, if the objective function satisfies an error bound condition we derive a local
linear rate of convergence for the expected values of the objective function. We also present
extensive numerical experiments on the eigenvalue complementarity problem for evaluating
the performance of our algorithms in comparison with state-of-the-art methods. From the
numerical experiments we can observe that on large optimization problems the new methods are
much more efficient than methods based on full gradient. This chapter is based on papers [84,85].

Chapter 5: In this chapter we propose a distributed version of a randomized (block) coordinate
descent method for minimizing the sum of a partially separable smooth convex function and
a fully separable non-smooth convex function. Under the assumption of block Lipschitz
continuity of the gradient of the smooth function, this method is shown to have a sublinear
convergence rate. Linear convergence rate of the method is obtained for the newly introduced
class of generalized error bound functions. We prove that the new class of generalized error
bound functions encompasses both global/local error bound functions and smooth strongly
convex functions. We also show that the theoretical estimates on the convergence rate depend
on the number of blocks chosen randomly and a natural measure of separability of the objective
function. The new algorithm was implemented in code C and tested on the constrained lasso
problem. Numerical experiments show that by parallelization we can accelerate substantially the
rate of convergence of the classical random coordinate descent method. This chapter is based on
paper [60].

Chapter 6: In this chapter we propose a parallel coordinate descent algorithm for solving smooth
convex optimization problems with separable constraints that may arise e.g. in distributed model
predictive control (MPC) for linear networked systems. Our algorithm is based on block coor-
dinate descent updates in parallel and has a very simple iteration. We prove (sub)linear rate of
convergence for the new algorithm under standard assumptions for smooth convex optimization.
Further, our algorithm uses local information and thus is suitable for distributed implementations.
Moreover, it has low iteration complexity, which makes it appropriate for embedded control. An
MPC scheme based on this new parallel algorithm is derived, for which every subsystem in the
network can compute feasible and stabilizing control inputs using distributed and cheap compu-
tations. For ensuring stability of the MPC scheme, we use a terminal cost formulation derived
from a distributed synthesis. The proposed control method was q implemented on a PLC Siemens
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for controlling a four tank process. This chapter is based on paper [61].
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